Successful conclusion to EU’s three-year Tulipp project for embedded image processing and vision applications – EEJournal

Delivers comprehensive reference platform for vision-based system designers comprising full development kit and ‘real-world’ Use Cases

Palaiseau, France – July 11, 2019. The Tulipp (Towards Ubiquitous Low-power Image Processing Platforms) Consortium has announced a highly successful conclusion to the EU’s three-year project. Beginning in January 2016, the Tulipp project targeted the improved development of high performance, energy efficient systems for the growing range of complex, vision-based image processing applications. The Tulipp project was funded with nearly €4 million from Horizon 2020, the European Union’s biggest research and innovation programme to date.

The conclusion of the Tulipp project sees the release of a comprehensive reference platform for vision-based embedded system designers, enabling computer vision product designers to readily address the combined challenges of low power, low latency, high performance and real-time image processing design constraints. The Tulipp reference platform includes a full development kit, comprising an FPGA-based embedded, multicore computing board, parallel real-time operating system and development tool chain with guidelines, coupled with ‘real world’ Use Cases focusing on diverse applications such as medical x-ray imaging, driver assistance and autonomous drones with obstacle avoidance. The complete Tulipp ecosystem was demonstrated earlier in the year to vision-based system designers in a series of hands-on tutorials.

“The Tulipp project has achieved all of its objectives,” said Philippe Millet of Thales and Tulipp’s Project Co-ordinator. “By taking a diverse range of application domains as the basis for defining a common reference processing platform that captures the commonality of real-time, high-performance image processing and vision applications, it has successfully addressed the fundamental challenges facing today’s embedded vision-based system…

Source Link