Outlining The Future Of Low Bandwidth Bitcoin – Bitcoin Magazine

There is a need to strengthen the Bitcoin ecosystem for people whose only computing device is a smartphone and who live where mobile internet access is expensive, slow, unreliable or censored. Senegalese Bitcoin developer Fodé Diop has made the point that many parts of the world are “mobile only,” not just “mobile first.”

Mobile wallet apps that allow users to retain control of their private keys for signing transactions, but do not act as full Bitcoin nodes, are usually referred to as “light” clients. Light clients make trade-offs to privacy and trust minimization in order to reduce the memory, persistent storage and communication bandwidth they require. This article focuses on how to minimize the bandwidth used by light client wallets running on a mobile phone.

Light clients have much lower bandwidth requirements than full nodes because they do not download the full Bitcoin blockchain. Instead light clients use some form of “simple payment verification” (SPV) to confirm transactions. Rather than directly confirm the validity of every transaction added to Bitcoin’s ledger since the genesis block, an SPV wallet only confirms that the particular transactions associated with the wallet were added to a block, and that this block is part of the chain of blocks with the most work securing it. An SPV wallet assumes, but does not verify, that the majority of honest miners will only contribute work to extend the blockchain built from transactions that follow the consensus rules of Bitcoin.

In this technical discussion we examine the light client bandwidth requirements and the subtle security and privacy trade-offs that exist for light clients designed to operate with limited internet connectivity.

The most secure solution for users is to run and confirm payments with their own Bitcoin full node. However, there is some correlation between countries where people rely on relatively expensive or unreliable metered internet connectivity — where Bitcoin’s…

Read More