Blockchain-facilitated sharing to advance outbreak R&D

Timely and widespread dissemination of resources and information related to pathogenic threats plays a critical role in outbreak recognition, research, containment, and mitigation (1, 2), as stakeholders from government, public health (PH), industry, and academia seek to implement interventions and develop vaccines, diagnostics, and drugs (3). But there are ersistent barriers to sharing and cooperative research and development (R&D) in the context of epidemics, rooted in a lack of trust in confidentiality and reciprocity (4, 5), ambiguity over resource ownership (6), and conflicting public, private, and academic incentives (24, 6). Here, we suggest how recent advances in blockchain and related technologies can enable decentralized mechanisms to help break down these systemic and largely nontechnological barriers. These mechanisms resolve scalability, energy consumption, and security concerns of early blockchain models and may be applied to underpin and interconnect, rather than supersede or conflict with existing, well-established systems and practices for storing, sharing, and governing resources.

As opposed to centralized databases that are maintained by a single party, a blockchain involves an infrastructure of different parties (nodes), each maintaining an identical copy of a distributed ledger. Once time-stamped into the ledger, records cannot be altered or removed unnoticed, owing to cryptographic data-structuring. A one-way algorithm processes data into cryptographic identifiers (hash codes), which are unique for an input value, that is, the algorithm will have a different output if the input is altered in any way. There is no way to reconstruct underlying data content from a hash code. In a blockchain, the hash code of the preceding record is included in the new record before “hashing” and time-stamping it, making the ledger evolve as a chained, time-stamped record-keeping system that is tamper-resistant by design: The hash of an altered ledger…

Source Link