A potential quantum leap for blockchain applications, Hub Projects

Wed, Nov 20, 2019 – 5:50 AM

The world of quantum technology – often associated with science fiction such as in the Ant-Man movie in 2015 – was in the spotlight recently after Google computer scientists released a paper in September claiming that a quantum computer had demonstrated “quantum supremacy”, which describes the potential of quantum computers to significantly outperform traditional ones.

According to the Google paper, the device was able to perform a calculation in 200 seconds what the scientists claimed would take 10,000 years by the fastest classical computer. However, IBM scientists soon came out to refute this claim, saying that a classical computer could be tuned to perform the calculation in just two days.

While an ordinary or classical computer stores data and performs computations as a series of bits that are either 1 or 0, a quantum version uses qubits, which can be 1 and 0 at the same time.

The properties of qubits allow quantum computers to perform billions of calculations simultaneously, far outpacing the fastest classical computers.

According to Associate Professor Paul Griffin from the Singapore Management University (SMU) School of Information Systems, quantum devices make the computations “probabilistic”, as opposed to “deterministic”. So instead of the deterministic “1+1=2”, in the quantum world it would read as “the probability of 1 + the probability of 1 = a probability of 2”.

“Obviously, for many applications you do need deterministic answers but there are quite a few applications that are probabilistic in nature and a quantum computer should be much more useful,” he said.

“For example, pricing a company stock depends on many events in the industry and markets and there is no deterministic answer to what the correct price is, but there is a most probable price and the trader who is closest to the most probable price will get the most profit.”

Solving the blockchain trilemma

A recent study by Assoc Prof Griffin argues that quantum…

Source Link